Penyelesaian
Tabel Simpleks
Selesaikan tabel simpleks berikut hingga mencapai
nilai optimal
Cj
|
80
|
100
|
0
|
0
|
0
|
|
|
Basis
|
|
X₁
|
X₂
|
S₁
|
S₂
|
S₃
|
bj
|
|
|
3
|
2
|
1
|
0
|
0
|
18
|
|
2
|
4
|
0
|
1
|
0
|
20
|
|
|
0
|
1
|
0
|
0
|
0
|
4
|
|
Zj
|
|
|
|
|
|
|
|
(Cj-Zj)
|
|
Penyelesaian:
·
Tahap 1
Cj
|
80
|
100
|
0
|
0
|
0
|
|
|||
Basis
|
|
X₁
|
X₂
|
S₁
|
S₂
|
S₃
|
bj
|
Rasio
|
|
S₁
|
0
|
3
|
2
|
1
|
0
|
0
|
18
|
9
|
|
S₂
|
0
|
2
|
4
|
0
|
1
|
0
|
20
|
5
|
|
S₃
|
0
|
0
|
1
|
0
|
0
|
0
|
4
|
4
|
|
Zj
|
0
|
0
|
0
|
0
|
0
|
|
pivot = 1
|
||
(Cj-Zj)
|
80
|
100
|
0
|
0
|
0
|
|
faktor pengali = 2
|
||
|
·
Tahap 2
Cj
|
80
|
100
|
0
|
0
|
0
|
|
|
||
Basis
|
|
X₁
|
X₂
|
S₁
|
S₂
|
S₃
|
bj
|
Rasio
|
|
S₁
|
0
|
3
|
0
|
1
|
0
|
0
|
10
|
3,33
|
|
S₂
|
0
|
2
|
0
|
0
|
1
|
0
|
4
|
2
|
|
X₂
|
100
|
0
|
1
|
0
|
0
|
0
|
4
|
̴̴
|
|
Zj
|
0
|
100
|
0
|
0
|
0
|
400
|
pivot = 2
|
||
(Cj-Zj)
|
80
|
0
|
0
|
0
|
0
|
|
faktor pengali = 0
|
||
|
·
Tahap 3
Cj
|
80
|
100
|
0
|
0
|
0
|
|
||
Basis
|
|
X₁
|
X₂
|
S₁
|
S₂
|
S₃
|
bj
|
Rasio
|
S₁
|
0
|
0
|
0
|
1
|
-1,5
|
0
|
4
|
̴
|
X₁
|
80
|
1
|
0
|
0
|
0,5
|
0
|
2
|
2
|
X₂
|
100
|
0
|
1
|
0
|
0
|
0
|
4
|
̴
|
Zj
|
80
|
100
|
0
|
40
|
0
|
560
|
|
|
(Cj-Zj)
|
0
|
0
|
0
|
-40
|
0
|
|
Karena (Cj-Zj) ≤ 0, maka sudah optimum
dengan laba sebesar 560
Tidak ada komentar:
Posting Komentar